Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 132(8): 1013-1033, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37053278

RESUMO

Diseases of the heart and the kidney, including heart failure and chronic kidney disease, can dramatically impair life expectancy and the quality of life of patients. The heart and kidney form a functional axis; therefore, functional impairment of 1 organ will inevitably affect the function of the other. Fibrosis represents the common final pathway of diseases of both organs, regardless of the disease entity. Thus, inhibition of fibrosis represents a promising therapeutic approach to treat diseases of both organs and to resolve functional impairment. However, despite the growing knowledge in this field, the exact pathomechanisms that drive fibrosis remain elusive. RNA-sequencing approaches, particularly single-cell RNA-sequencing, have revolutionized the investigation of pathomechanisms at a molecular level and facilitated the discovery of disease-associated cell types and mechanisms. In this review, we give a brief overview over the evolution of RNA-sequencing techniques, summarize most recent insights into the pathogenesis of heart and kidney fibrosis, and discuss how transcriptomic data can be used, to identify new drug targets and to develop novel therapeutic strategies.


Assuntos
RNA , Insuficiência Renal Crônica , Humanos , RNA/metabolismo , Qualidade de Vida , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Fibrose , Miofibroblastos/metabolismo
2.
Nat Rev Nephrol ; 18(6): 347-360, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35301441

RESUMO

The field of single-cell genomics and spatial technologies is rapidly evolving and has already provided unprecedented insights into complex tissues. Major advances have been made in dissecting the cellular composition and spatiotemporal interactions that mediate developmental processes in the fetal kidney. Single-cell technologies have also provided detailed insights into the heterogeneity of cell types within the healthy adult and shed light on the complex cellular mechanisms that contribute to kidney disease. The in-depth characterization of specific cell types associated with acute kidney injury and glomerular diseases has potential for the development of prognostic biomarkers and new therapeutics. Analyses of pathway activity in clear-cell renal cell carcinoma can predict the sensitivity of tumour cells to specific inhibitors. The identification of the cell of origin of renal cell carcinoma and of new cell types within the tumour microenvironment also has implications for the development of targeted therapeutics. Similarly, single-cell sequencing has provided new insights into the mechanisms underlying kidney fibrosis, specifically our understanding of myofibroblast origins and the contribution of cell crosstalk within the fibrotic niche to disease progression. These and future studies will enable the creation of a map to aid our understanding of the cellular processes and interactions in the developing, healthy and diseased kidney.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/patologia , Fibrose , Genômica , Humanos , Rim/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Microambiente Tumoral/genética
3.
Front Immunol ; 13: 1066176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591270

RESUMO

Introduction: SARS-CoV-2 infection results in varying disease severity, ranging from asymptomatic infection to severe illness. A detailed understanding of the immune response to SARS-CoV-2 is critical to unravel the causative factors underlying differences in disease severity and to develop optimal vaccines against new SARS-CoV-2 variants. Methods: We combined single-cell RNA and T cell receptor sequencing with CITE-seq antibodies to characterize the CD8+ T cell response to SARS-CoV-2 infection at high resolution and compared responses between mild and severe COVID-19. Results: We observed increased CD8+ T cell exhaustion in severe SARS-CoV-2 infection and identified a population of NK-like, terminally differentiated CD8+ effector T cells characterized by expression of FCGR3A (encoding CD16). Further characterization of NK-like CD8+ T cells revealed heterogeneity among CD16+ NK-like CD8+ T cells and profound differences in cytotoxicity, exhaustion, and NK-like differentiation between mild and severe disease conditions. Discussion: We propose a model in which differences in the surrounding inflammatory milieu lead to crucial differences in NK-like differentiation of CD8+ effector T cells, ultimately resulting in the appearance of NK-like CD8+ T cell populations of different functionality and pathogenicity. Our in-depth characterization of the CD8+ T cell-mediated response to SARS-CoV-2 infection provides a basis for further investigation of the importance of NK-like CD8+ T cells in COVID-19 severity.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , SARS-CoV-2 , Anticorpos
4.
Kidney Int ; 101(2): 338-348, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34774554

RESUMO

Chronic kidney disease (CKD) is accompanied with extensive cardiovascular calcification, in part correlating with functional vitamin K deficiency. Here, we sought to determine causes for vitamin K deficiency beyond reduced dietary intake. Initially, vitamin K uptake and distribution into circulating lipoproteins after a single administration of vitamin K1 plus K2 (menaquinone 4 and menaquinone 7, respectively) was determined in patients on dialysis therapy and healthy individuals. The patients incorporated very little menaquinone 7 but more menaquinone 4 into high density lipoprotein (HDL) and low-density lipoprotein particles than did healthy individuals. In contrast to healthy persons, HDL particles from the patients could not be spiked with menaquinone 7 in vitro and HDL uptake was diminished in osteoblasts. A reduced carboxylation activity (low vitamin K activity) of uremic HDL particles spiked with menaquinone 7 vs. that of controls was confirmed in a bioassay using human primary vascular smooth muscle cells. Kidney menaquinone 4 tissue levels were reduced in 5/6-nephrectomized versus sham-operated C57BL/6 mice after four weeks of a vitamin K rich diet. From the analyzed enzymes involved in vitamin K metabolism, kidney HMG-CoA reductase protein was reduced in both rats and patients with CKD. In a trial on the efficacy and safety of atorvastatin in 1051 patients with type 2 diabetes receiving dialysis therapy, no pronounced vitamin K deficiency was noted. However, the highest levels of PIVKA-II (biomarker of subclinical vitamin K deficiency) were noted when a statin was combined with a proton pump inhibitor. Thus, profound disturbances in lipoprotein mediated vitamin K transport and metabolism in uremia suggest that menaquinone 7 supplementation to patients on dialysis therapy has reduced efficacy.


Assuntos
Insuficiência Renal Crônica , Deficiência de Vitamina K , Vitamina K/metabolismo , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Insuficiência Renal Crônica/metabolismo , Distribuição Tecidual , Vitamina K/uso terapêutico , Vitamina K 1/metabolismo , Vitamina K 1/uso terapêutico , Vitamina K 2/metabolismo , Vitamina K 2/uso terapêutico , Deficiência de Vitamina K/complicações , Deficiência de Vitamina K/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...